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ABSTRACT

Graph neural networks (GNNs) have become the standard learning architectures
for graphs. GNNs have been applied to numerous domains ranging from quantum
chemistry, recommender systems to knowledge graphs and natural language pro-
cessing. A major issue with arbitrary graphs is the absence of canonical positional
information of nodes, which decreases the representation power of GNNs to distin-
guish e.g. isomorphic nodes and other graph symmetries. An approach to tackle
this issue is to introduce Positional Encoding (PE) of nodes, and inject it into the
input layer, like in Transformers. Possible graph PE are Laplacian eigenvectors.
In this work, we propose to decouple structural and positional representations to
make easy for the network to learn these two essential properties. We introduce a
novel generic architecture which we call LSPE (Learnable Structural and Positional
Encodings). We investigate several sparse and fully-connected (Transformer-like)
GNNs, and observe a performance increase for molecular datasets, from 2.87% up
to 64.14% when considering learnable PE for both GNN classes.1

1 INTRODUCTION

GNNs have recently emerged as a powerful class of deep learning architectures to analyze datasets
where information is present in the form of heteregeneous graphs that encode complex data con-
nectivity. Experimentally, these architectures have shown great promises to be impactful in diverse
domains such as drug design (Stokes et al., 2020; Gaudelet et al., 2020), social networks (Monti et al.,
2019; Pal et al., 2020), traffic networks (Derrow-Pinion et al., 2021), physics (Cranmer et al., 2019;
Bapst et al., 2020), combinatorial optimization (Bengio et al., 2021; Cappart et al., 2021) and medical
diagnosis (Li et al., 2020c).

Most GNNs (such as Defferrard et al. (2016); Sukhbaatar et al. (2016); Kipf & Welling (2017);
Hamilton et al. (2017); Monti et al. (2017); Bresson & Laurent (2017); Veličković et al. (2018); Xu
et al. (2019)) are designed with a message-passing mechanism (Gilmer et al., 2017) that builds node
representation by aggregating local neighborhood information. It means that this class of GNNs
is fundamentally structural, i.e. the node representation only depends on the local structure of the
graph. As such, two atoms in a molecule with the same neighborhood are expected to have similar
representation. However, it can be limiting to have the same representation for these two atoms as
their positions in the molecule are distinct, and their role may be specifically separate (Murphy et al.,
2019). As a consequence, the popular message-passing GNNs (MP-GNNs) fail to differentiate two
nodes with the same 1-hop local structure. This restriction is now properly understood in the context
of the equivalence of MP-GNNs with Weisfeiler-Leman (WL) test (Weisfeiler & Leman, 1968) for
graph isomorphism (Xu et al., 2019; Morris et al., 2019).

1Code: https://github.com/vijaydwivedi75/gnn-lspe
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Figure 1: Block diagram illustration of the proposed MPGNNs-LSPE architecture along with the
inputs, general framework of a layer, and the output and loss components.

The said limitation can be alleviated, to certain extents, by (i) stacking multiple layers, (ii) applying
higher-order GNNs, or (iii) considering positional encoding (PE) of nodes (and edges). Let us
assume two structurally identical nodes in a graph with the same 1-hop neighborhood, but different
with respect to 2-hop or higher-order neighborhoods. Then, stacking several layers (Bresson &
Laurent, 2017; Li et al., 2019) can propagate the information from a node to multiple hops, and thus
differentiate the representation of two far-away nodes. However, this solution can be deficient for
long-distance nodes because of the over-squashing phenomenon (Alon & Yahav, 2020). Another
approach is to compute higher-order node-tuple aggregations such as in WL-based GNNs (Maron
et al., 2019; Chen et al., 2019); though these models are computationally more expensive to scale
than MP-GNNs, even for medium-sized graphs (Dwivedi et al., 2020). An alternative technique is
to consider a global positioning of the nodes in the graph that can encode a graph-based distance
between the nodes (You et al., 2019; Dwivedi et al., 2020; Li et al., 2020b; Dwivedi & Bresson, 2021),
or can inform about specific sub-structures (Bouritsas et al., 2020; Bodnar et al., 2021).

Contribution. In this work, we turn to the idea of learning positional representation that can be
combined with structural GNNs to generate more expressive node embedding. Our main intent is to
alleviate the lack of canonical positioning of nodes in arbitrary graphs to improve the representation
power of MP-GNNs, while keeping their linear complexity for large-scale applications. For this
objective, we propose a novel framework, illustrated with Figure 1, that enables GNNs to learn both
structural and positional representations at the same time (thus named MPGNNs-LSPE). We show
that the proposed architecture with learnable PE can be used with any graph network that fits to the
MP-GNNs framework, and improves its performance (2.87% to 64.14%). In our demonstrations, we
formulate LSPE instances of both sparse GNNs, such as GatedGCNs (Bresson & Laurent, 2017)
and PNA (Corso et al., 2020) and fully-connected Transformers-based GNNs (Kreuzer et al., 2021;
Mialon et al., 2021). Our numerical experiments on three standard molecular benchmarks show that
different instantiations of MP-GNNs with LSPE surpass the previous state-of-the-art (SOTA) on two
datasets by considerable margins (26.23% and 0.66%), while achieving SOTA-comparable score on
the third. In addition, our evaluations find the sparse MP-GNNs to be outperforming fully-connected
GNNs, hence suggesting greater potential towards the development of highly efficient, yet powerful
architectures for graphs.

2 RELATED WORK

In this section, we review briefly the three research directions theoretical expressivity of GNNs, graph
positional encoding, and Transformer-based GNNs.
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Theoretical expressivity and Weisfeiler-Leman GNNs. As the theoretical expressiveness of MP-
GNNs is bounded by the 1-WL test (Xu et al., 2019; Morris et al., 2019), they may perform poorly on
graphs that exhibit several symmetries (Murphy et al., 2019), and additionally some message-passing
functions may not be discriminative enough (Corso et al., 2020). To this end, k-order Equivariant-
GNNs were introduced in Maron et al. (2018) requiring O(nk) memory and speed complexities.
Although the complexity was improved to O(n2) memory and O(n3) respectively (Maron et al.,
2019; Chen et al., 2019; Azizian & Lelarge, 2020), it is still inefficient compared with the linear
complexity of MP-GNNs.

Graph Positional Encoding. The idea of positional encoding, i.e. the notion of global position
of pixels in images, words in texts and nodes in graphs, plays a central role in the effectiveness
of the most prominent neural networks with ConvNets (LeCun et al., 1998), RNNs (Hochreiter &
Schmidhuber, 1997), and Transformers (Vaswani et al., 2017). For GNNs, the position of nodes
is more challenging due to the fact that there does not exist a canonical positioning of nodes in
arbitrary graphs. Despite these issues, graph positional encoding are as much critical for GNNs as
they are for ConvNets, RNNs and Transformers, as demonstrated for prediction tasks on graphs
(Srinivasan & Ribeiro, 2019; Cui et al., 2021). Nodes in a graph can be assigned index positional
encoding (PE). However, such a model must be trained with the n! possible index permutations
or else sampling needs to be done (Murphy et al., 2019). Another PE candidate for graphs can be
Laplacian Eigenvectors (Dwivedi et al., 2020; Dwivedi & Bresson, 2021) as they form a meaningful
local coordinate system, while preserving the global graph structure. However, there exists sign
ambiguity in such PE as eigenvectors are defined up to ±1, leading to 2k number of possible sign
values when selecting k eigenvectors which a network needs to learn. You et al. (2019) proposed
learnable position-aware embeddings based on random anchor sets of nodes, where the random
selection of anchors has its limitations, which makes their approach less generalizable on inductive
tasks. There also exists methods that encode prior information about a class of graphs of interest
such as rings for molecules (Bouritsas et al., 2020; Bodnar et al., 2021) which make MP-GNNs more
expressive. But the prior information regarding graph sub-structures needs to be pre-computed, and
sub-graph matching and counting require O(nk) for k-tuple sub-structure.

Transformer-based GNNs. Although sparse MP-GNNs are very efficient, they are susceptible to the
information bottleneck limitation (Alon & Yahav, 2020) in addition to vanishing gradient (similar to
RNNs) on tasks when long-range interactions between far away nodes are critical. To overcome these
limitations, there have been recent works that generalize Transformers to graphs (Dwivedi & Bresson,
2021; Kreuzer et al., 2021; Ying et al., 2021; Mialon et al., 2021) which alleviates the long-range
issue as ‘everything is connected to everything’. However, these methods either use non-learnable
PEs to encode graph structure information (Dwivedi & Bresson, 2021; Ying et al., 2021; Mialon
et al., 2021), or inject learned PEs to the Transformer network that relies on Laplacian eigenvectors
(Kreuzer et al., 2021), thus inheriting the sign ambiguity limitation.

A detailed review of the above research directions is available in the supplementary Section B. We
attempt to address some of the major limitations of GNNs by proposing a novel architecture with
consistent performance gains.

3 PROPOSED ARCHITECTURE

In this work, we decouple structural and positional representations to make easy for the network
to learn these two critical characteristics. This is in contrast with most existing architectures s.a.
Dwivedi & Bresson (2021); Beani et al. (2021); Kreuzer et al. (2021) that inject the positional
information into the input layer of the GNNs, and You et al. (2019) that rely on distance-measured
anchor sets of nodes limiting general, inductive usage. Given the recent theoretical results on the
importance of informative graph PE for expressive GNNs (Murphy et al., 2019; Srinivasan & Ribeiro,
2019; Loukas, 2020), we are interested in a generic framework that can enable GNNs to separate
positional and structural representations to increase their expressivity. Section 3.1 will introduce
our approach to augment GNNs with learnable graph PE. Our framework can be used with different
GNN architectures. We illustrate this flexibility in Sections C.1 and C.2 where the decoupling of
structural and positional information is applied to both sparse MP-GNNs and fully-connected GNNs.
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3.1 GENERIC FORMULATION: MP-GNNS-LSPE

Notation. Let G = (V, E) be a graph with V being the set of nodes and E the set of edges. The graph
has n = |V| nodes and E = |E| edges. The connectivity of the graph is represented by the adjacency
matrix A ∈ Rn×n where Aij = 1 if there exists an edge between the nodes i and j; otherwise
Aij = 0. The degree matrix is denoted D ∈ Rn×n. The node features and positional features for
node i is denoted by hi and pi respectively, while the features for an edge between nodes i and j is
indicated by eij . A GNN model is composed of three main components; an embedding layer for the
input features, a stack of convolutional layers, and a final task-based layer, as in Figure 1. The layers
are indexed by ` and ` = 0 denotes the input layer.

Standard MP-GNNs. Considering a graph which has available node and edge features, and these
are transformed at each layer, the update equations for a conventional MP-GNN layer are defined as:

MP-GNNs : h`+1
i = fh

(
h`i ,
{
h`j
}
j∈Ni

, e`ij

)
, h`+1

i , h`i ∈ Rd, (1)

e`+1
ij = fe

(
h`i , h

`
j , e

`
ij

)
, e`+1

ij , e`ij ∈ Rd, (2)

where fh and fe are functions with learnable parameters, and Ni is the neighborhood of the node i.
The design of functions fh and fe depends on the GNN architecture used, see Zhou et al. (2020) for
a review. As Transformer neural networks (Vaswani et al., 2017) are a special case of MP-GNNs
(Joshi, 2020), Eq. (1) can be simplified to encompass the original Transformers by dropping the edge
features and making the graph fully connected.

Input features and initialization. The node and edge features at layer ` = 0 are produced by a linear
embedding of available input node and edge features denoted respectively by hin

i ∈ Rdv , ein
ij ∈ Rde :

h`=0
i = LLh(hin

i ) = A0hin
i + a0 ∈ Rd, e`=0

ij = LLe(ein
ij) = B0ein

ij + b0 ∈ Rd, where A0 ∈ Rd×dv ,
B0 ∈ Rd×de and a0, b0 ∈ Rd are the learnable parameters of the linear layers.

Positional Encoding. Existing MP-GNNs that integrate positional information usually propose to
concatenate the PE with the input node features, similarly to Transformers (Vaswani et al., 2017):

MP-GNNs-PE : h`+1
i = fh

(
h`i ,
{
h`j
}
j∈Ni

, e`ij

)
, h`+1

i , h`i ∈ Rd, (3)

e`+1
ij = fe

(
h`i , h

`
j , e

`
ij

)
, e`+1

ij , e`ij ∈ Rd, (4)

with initial h`=0
i = LLh

([
hin
i

pin
i

])
= D0

[
hin
i

pin
i

]
+ d0 ∈ Rd, (5)

and e`=0
ij = LLe(ein

ij) = B0ein
ij + b0 ∈ Rd, (6)

where pin
i ∈ Rk is the input PE of node i, D0 ∈ Rd×(dv+k), d0 ∈ Rd are parameters for the linear

transformation. Such architecture merges the positional and structural representations together. It has
the advantage to keep the same linear complexity for learning, but it does not allow the positional
representation to be changed and better adjusted to the task at hand.

Decoupling position and structure in MP-GNNs. We decouple the positional information from the
structural information such that both representations are learned separately resulting in an architecture
with Learnable Structural and Positional Encodings, which we call MP-GNNs-LSPE. The layer
update equations are defined as:

MP-GNNs-LSPE : h`+1
i = fh

([
h`i
p`i

]
,

{[
h`j
p`j

]}
j∈Ni

, e`ij

)
, h`+1

i , h`i ∈ Rd, (7)

e`+1
ij = fe

(
h`i , h

`
j , e

`
ij

)
, e`+1

ij , e`ij ∈ Rd, (8)

p`+1
i = fp

(
p`i ,
{
p`j
}
j∈Ni

, e`ij

)
, p`+1

i , p`i ∈ Rd, (9)

The difference of this architecture with the standard MP-GNNs is the addition of the positional
representation update Eq. (9), along with the concatenation of these learnable PEs with the node
structural features, Eq. (7). As we will see in the next section, the design of the message-passing
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(a) ZINC molecule (val index 91)
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(b) ZINC molecule (val index 212)

Figure 2: Sample graph plots from the ZINC validation set with each node color in a graph represent-
ing a unique RWPE vector, when k = 24. The corresponding graph ids, the number of nodes in the
graphs and the number of unique RWPEs are labelled against the figures.

function fp follows the same analytical form of fh but with the use of the tanh activation function to
allow positive and negative values for the positional coordinates. It should be noted that the inclusion
of the edge features, e`ij in the h or p update is optional as several MP-GNNs do not include edge
features in their h updates. Nevertheless, the architecture we present is made as generic so as to be
used for future extensions in a convenient way.

Definition of initial PE. The choice of the initial PE is critical. In this work, we consider two
PEs: Laplacian PE (LapPE) and Random Walk PE (RWPE). LapPE are defined in Section B.2 as
pLapPE
i = [ Ui1, Ui2, · · · , Uik ] ∈ Rk. LapPE provide a unique node representation and are distance-

sensitive w.r.t. the Euclidean norm. However, they are limited by the sign ambiguity, which requires
random sign flipping during training for the network to learn this invariance (Dwivedi et al., 2020).

Inspired by Li et al. (2020b), we propose RWPE, a PE based on the random walk (RW) diffusion
process (although other graph diffusions can be considered s.a. PageRank (Mialon et al., 2021)).
Formally, RWPE are defined with k-steps of random walk as:

pRWPE
i =

[
RWii,RW2

ii, · · · ,RWk
ii

]
∈ Rk, (10)

where RW = AD−1 is the random walk operator. In contrast of Li et al. (2020b) which uses the full
matrix RWij for all pairwise nodes, we adopt a low-complexity usage of the random walk matrix by
considering only the landing probability of a node i to itself, i.e. RWii. Note that these PE do not
suffer from the sign ambiguity of LapPE, so the network is not required to learn additional invariance.
RWPE provide a unique node representation under the condition that each node has a unique k-hop
topological neighborhood for a sufficient large k. This assumption can be discussed. If we consider
synthetic strongly regular graphs like the CSL graphs (Murphy et al., 2019), then all nodes in a graph
have the same RWPE for any k value, since they are isomorphic by construction. However, despite
RWPE being the same for all nodes in a graph, these PE are unique for each class of isomorphic
graphs, resulting in a perfect classification of the CSL dataset, see Section A.1. For graphs such as
Decalin and Bicyclopentyl (Sato, 2020), nodes which are not isomorphic receive different RWPE for
k ≥ 5, also in Section A.1. Finally, for real-world graphs like ZINC molecules, most nodes receive a
unique node representation for k ≥ 24, see Figure 2 for an illustration, where the two molecules have
100% and 71.43% unique RWPEs respectively. Section A.3 presents a detailed study.

Experimentally, we will show that RWPE outperform LapPE, suggesting that learning the sign
invariance is more difficult (as there exist 2k possible sign flips for each graph) than not exactly
having unique node representation for each node. As mentioned above for CSL, RWPE are related
to the problem of graph isomorphism and higher-order node interactions. Precisely, iterating the
random walk operator for a suitable number of steps allows coloring non-isomorphic nodes, thus
distinguishing several cases of non-isomorphic graphs on which the 1-WL test, and equivalently
MP-GNNs, fail s.a. the CSL, Decalin and Bicyclopentyl graphs. We refer to Section A.2 for a formal
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presentation of the iterative algorithm. Finally, the initial PE of the network is obtained by embedding
the LapPE or RWPE into a d-dimensional feature vector:

p`=0
i = LLp(pPE

i ) = C0pPE
i + c0 ∈ Rd, where C0 ∈ Rd×k, c0 ∈ Rd. (11)

Positional loss. As we separate the learning of the structual and positional representations, it is
possible to consider a specific positional encoding loss along with the task loss. A natural candidate
is the Laplacian eigenvector loss (Belkin & Niyogi, 2003; Lai & Osher, 2014) that enforces the PE
to form a coordinate system constrained by the graph topology. As such, the final loss function of
MP-GNNs-LSPE is composed of two terms:

Loss = LossTask

([
h`=L

p`=L

])
+ α LossLapEig(p`=L), (12)

where h`=L ∈ Rn×d, p`=L ∈ Rn×k, k is the dimension of learned PE, ` = L is the final GNN layer,
and α > 0 an hyper-parameter. Observe also that we enforce the final positional vectors p`=L to have
centered and unit norm with mean(p`=L·,k ) = 0, ‖p`=L·,k ‖ = 1, ∀k to better approximate the Laplacian

eigenvector loss defined by LossLapEig(p) = 1
k trace

(
pT∆p

)
+ λ

k

∥∥pT p − Ik
∥∥2
F

with λ > 0 and
‖ · ‖2F being the Frobenius norm.

3.2 INSTANCES OF LSPE WITH MP-GNNS AND TRANSFORMER GNNS

We instantiate two classes of GNN architectures, both sparse MP-GNNs and fully-connected Trans-
former GNNs using our proposed LSPE framework. For sparse MP-GNNs, we consider GatedGCN
(Bresson & Laurent, 2017) and PNA (Corso et al., 2020), while we extend the recently developed
SAN (Kreuzer et al., 2021) and GraphiT (Mialon et al., 2021) with LSPE to develop Transformer-
LSPE architectures. We briefly demonstrate here how a GNN can be instantiated using LSPE (Eqs.
(7-9)) by developing GatedGCN-LSPE (Eqs. (14-16)), while the complete equations for the four
models are defined in Section C of the supplementary material.

GatedGCN-LSPE: Originally, GatedGCNs are sparse MP-GNNs equipped with a soft-attention
mechanism that is able to learn adaptive edge gates to improve the message aggregation step of GCN
networks (Kipf & Welling, 2017). Our proposed extension of this model with LSPE is defined as:

h`+1, e`+1, p`+1 = GatedGCN-LSPE
(
h`, e`, p`

)
, h ∈ Rn×d, e ∈ RE×d, p ∈ Rn×d, (13)

with h`+1
i = h`i + ReLU

(
BN
(
A`1

[
h`i
p`i

]
+
∑

j∈N (i)

η`ij �A`2
[
h`j
p`j

]))
, (14)

e`+1
ij = e`ij + ReLU

(
BN
(
η̂`ij
))
, (15)

p`+1
i = p`i + tanh

(
C`1p

`
i +

∑
j∈N (i)

η`ij � C`2p`j
)
, (16)

where η`ij = σ
(
η̂`ij
)
/
(∑

j′∈N (i) σ
(
η̂`ij′
)

+ ε
)
, η̂`ij = B`1h

`
i + B`2h

`
j + B`3e

`
ij , h

`
i , e

`
ij , p

`
i , η

`
ij , η̂

`
ij ∈

Rd, A`1, A`2 ∈ Rd×2d and B`1, B
`
2, B

`
3, C

`
1, C

`
2 ∈ Rd×d. Notice the p-update in Eq. (16) follows the

same analytical form as the h-update in Eq. (14) except for the difference in activation function, and
omission of BN, which was not needed in our experiments.

4 NUMERICAL EXPERIMENTS

We evaluate the proposed MPGNNs-LSPE architecture on the instances of sparse GNNs and
Transformer GNNs defined in Section 3.2 (all models are presented in Section C), using PyTorch
(Paszke et al., 2019) and DGL (Wang et al., 2019) on standard molecular benchmarks – ZINC (Irwin
et al., 2012), OGBG-MOLTOX21 and OGBG-MOLPCBA (Hu et al., 2020). ZINC and MOLTOX21
are of medium scale with 12K and 7.8K graphs respectively, whereas MOLPCBA is of large scale
with 437.9K graphs. These datasets, each having a global graph-level property to be predicted, consist
of molecules which are represented as graphs of atoms as nodes and bonds between the atoms as
edges.
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4.1 DATASETS AND EXPERIMENTAL SETTINGS

ZINC is a graph regression dataset where the property to be predicted for a graph is its constrained
solubility which is a vital chemical property in molecular design (Jin et al., 2018). We use the 12,000
subset of the dataset with the same splitting defined in Dwivedi et al. (2020). Mean Absolute Error
(MAE) of the property being regressed is the evaluation metric. OGBG-MOLTOX21 is a multi-task
binary graph classification dataset where a qualitative (active/inactive) binary label is predicted
against 12 different toxicity measurements for each molecular graph (Tox21, 2014; Wu et al., 2018).
We use the scaffold-split version of the dataset included in OGB (Hu et al., 2020) that consists of
7,831 graphs. ROC-AUC averaged across the tasks is the evaluation metric. OGBG-MOLPCBA
is also a multi-task binary graph classification dataset from OGB where an active/inactive binary
label is predicted for 128 bioassays (Wang et al., 2012; Wu et al., 2018). It has 437,929 graphs with
scaffold-split and the evaluation metric is Average Precision (AP) averaged over the tasks.

To evaluate different instantiations of our proposed MPGNNs-LSPE, we follow the same bench-
marking protocol in Dwivedi et al. (2020) to fairly compare several models on a fixed number of
500k model parameters, for ZINC. We relax the model sizes to larger parameters for evaluation on
the two OGB datasets as observed being practised on their leaderboards (Hu et al., 2020). The total
size of parameters of each model, including the number of layers used, are indicated in the respective
experiment tables, with the remaining implementation details included in supplementary Section D.

4.2 RESULTS AND DISCUSSION

The results of all our experiments on different instances of LSPE along with performance without
using PE are presented in Table 1 whereas the comparison of the best results from Table 1 with
baseline models and SOTA is shown in Table 2. We now summarize our observations and insights.

Table 1: Results on the ZINC, OGBG-MOLTOX21 and OGBG-MOLPCBA datasets. All scores are
averaged over 4 runs with 4 different seeds. Bold: GNN’s best score, Red: Dataset’s best score.

Z
IN

C

Model Init PE LSPE PosLoss L #Param TestMAE±s.d. TrainMAE±s.d. Epochs Epoch/Total
GatedGCN x x x 16 504309 0.251±0.009 0.025±0.005 440.25 8.76s/1.08hr
GatedGCN LapPE x x 16 505011 0.202±0.006 0.033±0.003 426.00 8.91s/1.22hr
GatedGCN RWPE D x 16 522870 0.093±0.003 0.014±0.003 440.75 15.17s/1.99hr
GatedGCN RWPE D D 16 522870 0.090±0.001 0.013±0.004 460.50 33.06s/4.39hr

PNA x x x 16 369235 0.141±0.004 0.020±0.003 451.25 79.67s/10.03hr
PNA RWPE D x 16 503061 0.101±0.003 0.026±0.012 443.75 126.06s/15.77hr

SAN x x x 10 501314 0.181±0.004 0.017±0.004 433.50 74.33s/9.23hr
SAN RWPE D x 10 588066 0.104±0.004 0.016±0.002 462.50 134.74s/17.23hr

GraphiT x x x 10 501313 0.181±0.006 0.021±0.003 493.25 63.54s/9.37hr
GraphiT RWPE D x 10 588065 0.106±0.002 0.028±0.002 420.50 125.39s/14.84hr

M
O

LT
O

X
21

Model Init PE LSPE PosLoss L #Param TestAUC±s.d. TrainAUC±s.d. Epochs Epoch/Total
GatedGCN x x x 8 1003739 0.772±0.006 0.933±0.010 304.25 5.12s/0.46hr
GatedGCN LapPE x x 8 1004355 0.774±0.007 0.921±0.006 275.50 5.23s/0.48hr
GatedGCN RWPE D x 8 1063821 0.775±0.003 0.906±0.003 246.50 5.99s/0.63hr

PNA x x x 8 5244849 0.755±0.008 0.876±0.014 214.75 6.25s/0.38hr
PNA RWPE D x 8 5357393 0.781±0.013 0.901±0.013 249.75 9.87s/0.73hr
PNA RWPE D D 8 5357393 0.778±0.006 0.906±0.012 245.00 24.09s/1.70hr

SAN x x x 10 957871 0.744±0.007 0.915±0.015 279.75 18.06s/1.44hr
SAN RWPE D x 10 1051017 0.744±0.008 0.918±0.018 281.75 30.82s/2.84hr

GraphiT x x x 10 957870 0.743±0.003 0.919±0.023 276.50 16.73s/1.36hr
GraphiT RWPE D x 10 1051788 0.746±0.010 0.934±0.016 279.75 27.92s/2.57hr

M
O

L
PC

B
A

Model Init PE LSPE PosLoss L #Param TestAP±s.d. TrainAP±s.d. Epochs Epoch/Total
GatedGCN x x x 8 1008263 0.262±0.001 0.401±0.057 190.50 149.10s/7.91hr
GatedGCN LapPE x x 8 1008879 0.266±0.002 0.391±0.003 177.00 152.94s/8.29hr
GatedGCN RWPE D x 8 1068721 0.267±0.002 0.403±0.006 181.00 206.43s/11.64hr

PNA x x x 4 6550839 0.279±0.003 0.448±0.004 129.25 174.75s/6.34hr
PNA RWPE D x 4 6521029 0.287±0.003 0.392±0.002 334.50 202.59s/23.68hr

No PE results in lowest performance. In Table 1, the GNNs which do not use PE tend to give the
worse performance on all the three datasets. This finding is aligned to the recent literature (Sec.
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Table 2: Comparison of our best LSPE results from Table 1 with baselines and state-of-the-art GNNs
(Sec. A.4) on each dataset. For ZINC, all the scores in Table 2a are the models with the ∼500k
parameters. The scores on OGBG-MOL* in Tables 2b and 2c are taken from the OGB project and its
leaderboards (Hu et al., 2020), where models have different number of parameters.

(a) ZINC

Model Test MAE
GCN 0.367±0.011
GAT 0.384±0.007

GatedGCN-LapPE 0.202±0.006
GT 0.226±0.014

SAN 0.139±0.006
Graphormer 0.122±0.006

GatedGCN-LSPE 0.090±0.001

(b) OGBG-MOLTOX21

Model Test ROC-AUC
GCN 0.7529±0.0069

GCN-VN 0.7746±0.0086
GIN 0.7491±0.0051

GIN-VN 0.7757±0.0062
GatedGCN-LapPE 0.7743±0.0073

PNA-LSPE 0.7808±0.0130

(c) OGBG-MOLPCBA

Model Test AP
GIN 0.2266±0.0028

GIN-VN 0.2703±0.0023
DeeperGCN-VN 0.2781±0.0038

PNA 0.2838±0.0035
DGN 0.2885±0.0030

PHC-GNN 0.2947±0.0026
PNA-LSPE 0.2873±0.0027

B.2) that has guided research towards powerful PE methods for expressive GNNs. Besides, it can
be observed that the extent of poor performance of models without PE against using a PE (LapPE
or LSPE) is greater for ZINC than the two OGBG-MOL* datasets used. This difference can be
explained by the fact that ZINC features are purely atom and bond descriptors whereas OGB-MOL*
features consist additional information that is informative of e.g. if an atom is in ring, among others.

LSPE boosts the capabilities of existing GNNs. Both sparse GNNs and Transformer GNNs are
improved significantly when they are augmented with LSPE having RWPE as initial PE, see Table 1.
For instance, the best GNN without PE for ZINC, i.e. PNA, gives an improvement of 28.37% (0.101
vs. 0.141) when LSPE is used to learn the structural and positional representations in a decoupled
manner. On other GNNs, this boost is even higher, see GatedGCN-LSPE which shows a gain of
64.14% (0.090 vs. 0.251). On MOLTOX21, PNA-LSPE improves 3.44% (0.781 vs. 0.755) over
PNA while the remaining models show either minor gains or attain the same performance when not
using PE. This consistent trend is also observed for MOLPCBA where LSPE boosts PNA by 2.87%.

Sparse vs. Transformer GNNs. When we compare the performance of sparse GNNs (GatedGCN,
PNA) against Transformer GNNs (SAN, GraphiT) augmented with LSPE in Table 1, the performance
of the sparse GNNs is surprisingly better than the latter, despite Transformer GNNs being theoretically
well-posed to counter the limitations of long-range interactions of the former. Notably, the evaluation
of our proposed architecture, in this work, is on molecular graphs on which the information among
local structures seems to be the most critical, diminishes the need of full attention. This also aligns
with the insight put forward in Kreuzer et al. (2021) where the SAN, a Transformer model, benefited
less from full attention on molecules. Beyond molecular graphs, there may be other domains where
Transformer GNNs could give better performance, but still these would not scale in view of the
quadratic computational complexity. Indeed, it is important to notice the much lesser training times
of sparse GNNs compared to Transformer GNNs in Table 1.

LSPE improves the state-of-the-art. When we compare the best performing instantiation of the
LSPE from Table 1 with baseline GNN models from the literature on the three benchmark datasets,
our proposed architecture improves the SOTA on two of these datasets, while achieving SOTA-
comparable performance on the third, see Table 2. On ZINC, GatedGCN-LSPE surpasses most
baselines by a large margin to give a test MAE of 0.090 which is an improvement of 35.25% and
26.23% respectively over the two recent-most Transformer based GNNs, SAN and Graphormer. On
MOLTOX21, PNA-LSPE reports a test ROC-AUC score of 0.7808 which is a 0.66% improvement
over the best baseline GIN which uses virtual node (VN). Finally, LSPE enables PNA to achieve
comparable performance to SOTA on MOLPCBA while boosting its performance when no PE was
used. We note here that ZINC scores can even be boosted beyond LSPE’s SOTA when expert prior
knowledge is used (Bouritsas et al., 2020; Bodnar et al., 2021) while Graphormer (Ying et al., 2021)
achieved the top score on MOLPCBA when pre-trained on a very large (3.8M graphs) molecular
dataset. To ensure fair comparison with other scores, we did not use these two results in Table 2.

On Positional loss. It can be observed in Table 1 that the positional loss, Eq. (12), further pushes the
best LSPE score on ZINC slightly from 0.093 to 0.090, while on MOLTOX21 it only improves the
train score and not the generalization performance. We will investigate a more consistent positional
loss in a future work.
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Table 3: Comparing the final LSPE architecture against simpler models which add pre-computed PE
at input layer of a GNN, using GatedGCN model on ZINC. The column ‘Final h’ denotes whether
only the node structural features are used as final node features (denoted by hL), or are concatenated
with node positional features (denoted by [hL, pL]) at the final layer.

Model Init PE LSPE Final h L #Param Test MAE±s.d. Train MAE±s.d. #Epochs Epoch/Total

GatedGCN x x hL 16 504309 0.251±0.009 0.025±0.005 440.25 8.76s/1.08hr
GatedGCN LapPE x hL 16 505011 0.202±0.006 0.033±0.003 426.00 8.91s/1.22hr
GatedGCN RWPE x hL 16 505947 0.122±0.003 0.013±0.003 436.25 9.14s/1.28hr

GatedGCN LapPE D hL 16 516722 0.202±0.008 0.032±0.005 405.25 15.10s/1.84hr
GatedGCN LapPE D [hL, pL] 16 520734 0.196±0.008 0.023±0.004 454.00 15.22s/2.06hr

GatedGCN RWPE D hL 16 518150 0.100±0.006 0.018±0.012 395.00 15.09s/1.73hr
GatedGCN RWPE D [hL, pL] 16 522870 0.093±0.003 0.014±0.003 440.75 15.17s/1.99hr

Finally, we would like to highlight the generic nature of our proposed architecture which can be
applied to any MP-GNN in practice as demonstrated by four diverse GNNs in this work.

4.3 ABLATION STUDIES

Through ablation studies, we show – i) the usefulness of learning positional representation at every
layer vs. simply injecting a pre-computed positional encoding in the input layer, and ii) the selection
of the number of k for the steps in RWPE in the proposed LSPE architecture.

Learning PE at every layer provides the best performance. In Table 3, GatedGCN-RWPE corre-
sponds to the model where LapPE are replaced with k-dim pre-computed random walk features at the
first layer, and the PE are not updated in the subsequent layers. First, we observe a significant leap
in performance (from 0.202 to 0.122) when the RWPE are injected in place of LapPE, suggesting
that RWPE could encode better positional information in GNNs as they are not limited by the sign
ambiguity of LapPE. See Section A.1 in the supplementary material for an example of RWPE’s
representation power. Now, if we observe the training performance, GatedGCN-RWPE leads to
an overfit on ZINC. However, when the positional representations are also updated, the overfit is
considerably alleviated improving the test score to 0.100. Finally, when we further fuse the learned
positional features at the final layer with the structural features, Eq. (12), the model achieves the
best MAE test of 0.093. This study justifies how the GNN model learns best when the positional
representations can be tuned and better adjusted to the learning task being dealt with.

The choice of k steps to initialize RWPE. In Figure 3, we show the effect of choosing a suitable
number of k steps for the random walk features that are used as initial positional encoding in Section
3.1. This value k is also used to set the final dimension of the learned positional representation in
the last layer. Numerical experiments show the best values of k to be 20 and 16 for ZINC with
GatedGCN-LSPE and OGBG-MOLTOX21 with PNA-LSPE respectively, which are larger values
from what was used in Li et al. (2020b) (k = 3, 4) where the RW features are treated as distance
encoding. The difference of k value is due to two reasons. First, the proposed RWPE requires to use
a large k value to possibly provide a unique node representation with different k-hop neighborhoods.
Second, Li et al. (2020b) not only uses RWk

ii but also considers all pairwise RWk
ij between nodes i

and j in a target set of nodes, which increases the computational complexity.
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Figure 3: Test scores on selecting different values of k which is used to determine the number of
iterative steps of RW in RWPE as well as the dimension of the learned PE at the final layer, Eqn. 12.
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5 CONCLUSION

This work presents a novel approach to learn structural and positional representations separately
in a graph neural network. The resultant architecture, LSPE enables a principled and effective
learning of these two key properties that make GNN representation even more expressive. Main
design components of LSPE are – i) higher-order position informative random walk features as PE
initialization, ii) decoupling positional representations at every GNN layer, and iii) the fusion of the
structural and positional features finally to generate hybrid features for the learning task. We observe
a consistent increase of performance across several instances of our model on the benchmark datasets
used for evaluation. Our architecture is simple and universal to be used with any sparse GNNs or
Transformer GNNs as demonstrated by two sparse GNNs and two fully connected Transformer based
GNNs in our numerical experiments. Given the importance of incorporating expressive positional
encodings to theoretically improve GNNs as seen in the recent literature, we believe this paper
provides a useful architectural framework that can be considered when developing future models
which improve graph positional encodings, for both GNNs and Transformers.
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A SUPPLEMENTARY

A.1 DISTINGUISHING NON-ISOMORPHIC GRAPHS USING RANDOM WALK FEATURES

The choice of the initial PE in our proposed architecture can be several based on graph diffusion or
other related techniques. In this section, we study RWPE (Eqn. 10) which we initialize with k-steps
of random walk. Precisely we use a k-dim vector that encodes the landing probabilities of a node i to
itself in 1 to k steps. This initial PE vector for a node i is given by [RWii,RW2

ii, . . . ,RWk
ii] ∈ Rk

which is pre-computed before the model training. Here, we demonstrate that such PE vector can
help distinguish i) structurally dissimilar nodes and ii) non-isomorphic graphs on which 1-WL, and
equivalently MP-GNNs, fail, thus illustrating the empirically powerful nature of MPGNNs-LSPE
that relies on this choice of positional features initialization.

Figure 4: Left: Example 3-regular graph with 8 nodes from Li et al. (2020b) where the nodes are
structurally different and colored accordingly. The 4-dim initial RWPE vector is shown against the
corresponding nodes with their respective colors. Right: Example pair of non-isomorphic graphs
with 11 nodes and skip-links 2 and 3 from Murphy et al. (2019). Each node in a graph gets the
same 4-dim RWPE vector, and shown above in colors are the respective graphs’ RWPE vectors after
averaging across all the nodes.

Figure 5: A pair of non-isomorphic and non-regular graphs (Left: Decalin, Right: Bicyclopentyl)
from Sato (2020). The 5-dim initial PE vector is shown against the corresponding nodes with their
respective colors.

We show the simulation of the nodes’ initial RWPE vectors on three examples in Figure 4 (Left),
Figure 4 (Right), and Figure 5 where the graphs either do not have any node attributes (Figure 4), or
have the same node attributes (Figure 5 where each node denotes a Carbon atom). When we apply
MPGNNs on the graph in 4 (Left), each node will have the same feature representation as it is a
regular graph without any node attributes. However, there are structurally 3 different kinds of nodes
denoted by the same number of different colors. If we initialize the PE for these nodes for k = 4
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random walk steps, we can observe that the nodes are being assigned the 4-dim feature vectors that is
consistent to their initial structural roles in the graph, thus being distinguishable.

Similarly, Figure 4 (Right) is a pair of non-isomorphic graphs from the theoretically challenging and
highly symmetric Circulant Skip Link (CSL) dataset from Murphy et al. (2019). It can be noticed
that every node in a graph here has the same structural role as the each node has edges with other
nodes at same hops. However, in Gskip(11, 2), the edges are between nodes at 1, 2 hops whereas in
Gskip(11, 3), the edges are between the nodes at 1, 3 hops, with 2 and 3 being the skip-links of the
two graphs, respectively. In such a scenario, the node in the Gskip(11, 2) gets a different 4-dim initial
PE than a node in Gskip(11, 3), thus helping eventually to distinguish the two graphs when these node
features are pooled to generate the graph feature vector.

Finally, in Figure 5, a pair of non-isomorphic and non-regular graphs is shown from Sato (2020) that
MPGNNs fail to distinguish. If we use 5 steps of Random Walk to initialize the node’s PE vector,
we can observe that the two graphs can easily be distinguished. We note here that the random walk
based PE initialization (RWPE) is close to one of the Distance Encoding instantiations used in Li
et al. (2020b). However, we do not require to consider pairwise scores RWk

ij between nodes i and
j and any sub-set of nodes from the original graph, thus making our method less computationally
demanding.

A.2 RANDOM WALK PE FEATURE AND GRAPH ISOMORPHISM TEST

Similar to the 1-WL test for graph isomorphism (Weisfeiler & Leman, 1968; Morris et al., 2019; Sato,
2020), the RWPE can be used as a node coloring algorithm to test if two graphs are non-isomorphic,
as described in Algorithm 1. Note that this algorithm cannot guarantee that two graphs are isomorphic,
like the WL test. However, our analysis in Section A.1 shows this algorithm to be strictly powerful
than the 1-WL test as the pairs of graphs in Figure 4 (Right) and in Figure 5 are not distinguishable
by 1-WL. Although this increase in power is being achieved without the need of maintaining colors
for tuple of nodes to encode higher order interactions (as in k-WL), the algorithm’s complexity is of
O(k ∗ n3) due to the matrix multiplication in Step 5 (b) and Step 5 (c), compared to O(k ∗ n2) of
1-WL, with k being the number of iterations until convergence.

Algorithm 1 Algorithm to decide whether a pair of graphs are not isomorphic based on random walk
landing probabilities of each node to itself.
Input: A pair of graphs G1 = (V1, E1), G2 = (V2, E2) with n nodes and e edges in each graph.
A1 ∈ Rn×n and A2 ∈ Rn×n denote the adjacency matrices, D1 ∈ Rn×n and D2 ∈ Rn×n denote
the degree matrices of graphs G1 and G2 respectively.
Output: Return “non-isomorphic” if G1 and G2 are not isomorphic else “possibly isomorphic”.

1. M (0) ← A1D
−1
1 ∈ Rn×n

2. N (0) ← A2D
−1
2 ∈ Rn×n

3. c(0)u ← M
(0)
u,u ∀u ∈ V1

4. d(0)v ← N
(0)
v,v ∀v ∈ V2

5. for k = 1, 2, · · · (until convergence to stationary distribution)

(a) if HASH
(
{{c(k−1)u ∈ Rk | u ∈ V1}}

)
6= HASH

(
{{d(k−1)v ∈ Rk | v ∈ V2}}

)
then

return “non-isomorphic”
(b) M (k) ← M (k−1)M (0) ∈ Rn×n
(c) N (k) ← N (k−1)N (0) ∈ Rn×n

(d) c(k)u ← append M
(k)
u,u to c

(k−1)
u ∀u ∈ V1

(e) d(k)v ← append N
(k)
v,v to d

(k−1)
v ∀v ∈ V2

6. return “possibly isomorphic”

where HASH is an injective hash function and {{. . .}} denotes a multiset.
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A.3 STUDY OF LAPPE AND RWPE AS INITIAL PE
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(a) LapPE, k = 36
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Figure 6: Plot of the number of nodes in a graph vs. the number of unique PE for LapPE and RWPE.
A point in the plots represents a graph in the ZINC validation set (composed of 1000 graphs) where
the x-axis is the number of nodes, the y-axis is the number of unique PEs and the point intensity is
the number of graphs with the same pair (x, y). Besides, Fig. 6a has 36-dim LapPE (trailing dims
padded with zero for a graph with n < 36), and Fig. 6b has 24-dim RWPE.
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(d) ZINC molecule (val index 672)

Figure 7: Sample graph plots from the ZINC validation set with each node color in a graph represent-
ing a unique RWPE vector, when k = 24. The corresponding graph ids, the number of nodes in the
graphs and the number of unique RWPEs are labelled against the figures.

Figure 6 visualizes the uniqueness of the node representation with LapPE and RWPE (which serve as
initial PE of our network) using the ZINC validation set of 1000 real-world molecular graphs. If the
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initial PE is unique for each node in a graph, then the graph lies on the straight diagonal line. Figure
6a shows the result for LapPE, all graphs lie on the diagonal line as Laplacian eigenvectors guarantee
unique node coordinates in the Euclidean transformed space. Figure 6b presents the result for RWPE.
We observe that not all, but a large amount of ZINC molecular graphs stay close to the straight line,
showing that most graphs have a large amount of nodes with unique RWPE. For example, there are
30 graphs with 24 nodes having 21 unique RWPE, equivalent to 87.5% of nodes with unique PE.

Additionally, we visualize four sample graph plots from the ZINC validation set in Figure 7 where
the first two graphs have completely unique RWPE features, while the next two graphs have partially
unique RWPEs (71.43% and 72.22% respectively). The visualization assigns a unique node color
for each unique RWPE representation. Therefore, graphs in Figures 7a and 7b are plotted with each
node assigned to a unique color based on their RWPE features, and graphs in Figures 7c and 7d
are represented with 10 and 13 unique colors respectively corresponding to their number of unique
RWPE representations. In particular, observe the green-shade colored nodes in Figure 7c (top and
bottom-right) as well as blue-shade (mid-left) and orange-shade (bottom-right) colored nodes in
Figure 7d. We can easily see that the nodes with the same color are isomorphic in the graph, i.e. their
k-hop structural neighborhoods are the same for values k ≥ 11.

We remind that RWPE provides a unique node representation under the condition that each node have a
unique k-hop topological neighborhood for a sufficient large k. While this condition is experimentally
true for most nodes, it is not always satisfied. But despite this approximation, for a sufficiently large
number k of random walk iterations, RWPE is still able to capture global higher-order positioning of
nodes that is used as initial PE, and is beneficial to the proposed LSPE architecture as demonstrated
by the gain of performance in several experiments.

A.4 MODELS USED FOR COMPARISON IN TABLE 2

As a complete reference, the different GNN baselines and SOTA models that are used for the
comparison in Table 2 are Graph Convolutional Networks (GCN) (Kipf & Welling, 2017), Graph
Attention Networks (GAT) (Veličković et al., 2018), GatedGCN-LapPE (Bresson & Laurent, 2017;
Dwivedi et al., 2020), Graph Transformer (GT) (Dwivedi & Bresson, 2021), Spectral Attention
Networks (SAN) (Kreuzer et al., 2021), Graphormer (Ying et al., 2021), Graph Isomorphism Networks
(GIN) (Xu et al., 2019), DeeperGCN (Li et al., 2020a), Principle Neighborhood Aggregation (PNA)
(Corso et al., 2020), Directional Graph Networks (DGN) (Beani et al., 2021) and Parameterized
Hypercomplex GNNs (PHC-GNN) (Le et al., 2021).

B RELATED WORK IN DETAIL

In this detailed section on related work, we first review the limitations of existing MP-GNN architec-
tures in terms of their theoretical expressiveness, suggesting possible improvements to make GNNs
more powerful. Then, we introduce a number of non-learned and learning techniques that can be
studied under the umbrella of graph positional encoding. Finally, we highlight the recent develop-
ments for generalizing Transformers to graphs. Our aim is to connect meaningful innovations through
the detailed background on these three research directions, the unification of which spearheaded the
development of this work.

B.1 THEORETICAL EXPRESSIVITY AND WEISFEILER-LEMAN GNNS

Weisfeiler-Leman test. The limitation of MP-GNNs in failing to distinguish non-isomorphic graphs
was first carefully studied in Xu et al. (2019) and Morris et al. (2019), based on the equivalence
of MP-GNNs and the 1-WL isomorphism test (Weisfeiler & Leman, 1968). As such, MP-GNNs
may perform poorly on graphs that exhibit several symmetries in their original structure, such as
node and edge isomorphisms (Murphy et al., 2019; Srinivasan & Ribeiro, 2019). Besides, some
message-passing functions may not be discriminative enough (Xu et al., 2019; Corso et al., 2020).

Equivariant GNNs. Graph Isomorphism Networks (GINs) (Xu et al., 2019) were designed to be as
maximally expressive as the original 1-WL test (Weisfeiler & Leman, 1968). However, the 1-WL
test can fail to distinguish (simple) non-isomorphic graphs, thus requiring novel GNNs with more
expressivity power. As the original 1-WL test only considers 2-tuple of nodes, i.e. the standard edges
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in a graph, a natural approach to improve the expressivity power of the 1-WL test is to examine
higher-order interactions between nodes with k-tuple of nodes with k ≥ 3. To this end, k-order
Equivariant-GNNs were introduced in Maron et al. (2018). But these architectures require O(nk)
memory and speed complexities. This is an important practical limitation as k = 3 is at least needed
to design more powerful GNNs than GINs. Along this line, the most efficient WL-GNNs that have
been proposed are in Maron et al. (2019); Chen et al. (2019); Azizian & Lelarge (2020), which have
O(n2) memory and O(n3) speed complexities.

B.2 GRAPH POSITIONAL ENCODING

Importance of Positional Information. The idea of positional encoding, i.e. the notion of global
position of pixels in images, words in texts and nodes in graphs, plays a central role in the effectiveness
of the most prominent neural networks with ConvNets (LeCun et al., 1998), RNNs (Hochreiter &
Schmidhuber, 1997), and Transformers (Vaswani et al., 2017). These architectures integrate structural
and positional attributes of data when building abstract feature representations. For instances,
ConvNets intrinsically consider regular spatial structure for the position of pixels, RNNs also build
on the sequential structure of the word positions, and Transformers employ positional encoding of
words (see Dufter et al. (2021) for a review). For GNNs, the position of nodes is more challenging
due to the fact that there does not exist a canonical positioning of nodes in arbitrary graphs. This
implies that there is no obvious notion of global and relative position of nodes, and consequently no
specific directions on graphs (like the top, down, left and right directions in images). Despite these
issues, graph positional encoding are as much critical for GNNs as they are for ConvNets, RNNs and
Transformers, as demonstrated for prediction tasks on graphs (Srinivasan & Ribeiro, 2019; Cui et al.,
2021).

Index Positional Encoding. Loukas (2020) identified another cause of the limited expressivity of
the standard MP-GNNs. Such GNNs do not have the capacity to handle anonymous nodes, i.e.
nodes which do not have unique node features. This property turns out to be critical to show that
MP-GNNs can be universal approximators if each node in the graph can be assigned to a unique or
discriminating feature. The theorem results from an alignment between MP-GNNs and distributed
local algorithms (Naor & Stockmeyer, 1995; Sato et al., 2019). In order to address the issue of
anonymous MP-GNNs and improve their theoretical expressiveness w.r.t the WL test, Murphy et al.
(2019) introduced Graph Relational Pooling. Their model assigns a unique identifier to each node,
defined by an indexing of the nodes. However, such a model must be trained with the n! possible
index permutations to guarantee higher expressivity, which is not computationally feasible. As a
consequence, during training, node indexing is uniformly sampled from the n! possible choices in
order for their network to learn to be independent to the choice of the index PE at test time. Similarly,
random node identifier could be used for breaking the node anonymity. Yet, this PE also suffers from
the lack of generalization for unseen graphs (Loukas, 2020).

Laplacian Positional Encoding. Besides providing a unique representation for each node, meaning-
ful graph PE should also be permutation-invariant and distance-sensitive, meaning that the difference
between the PEs of two nodes far apart on the graph must be large, and small for two nodes nearby.
Laplacian eigenvectors (Belkin & Niyogi, 2003) appear to be good candidates for graph PE, belonging
to the class of unsupervised manifold learning techniques. Precisely, they are spectral techniques that
embed graphs into an Euclidean space, and are defined via the factorization of the graph Laplacian
∆ = In −D−1/2AD−1/2 = UTΛU , where In is the n× n identity matrix, A the n× n adjacency
matrix, D the n× n degree matrix, and n× n matrices Λ and U correspond to the eigenvalues and
eigenvectors respectively. The complexity for computing this full factorization is O(E3/2) and O(n)
with approximate Nystrom method (Fowlkes et al., 2004). Laplacian eigenvectors form a meaningful
local coordinate system, while preserving the global graph structure. As these eigenvectors hold the
key properties of permutation-invariant, uniqueness, computational efficiency and distance-aware
w.r.t. the graph topology, they were proposed as graph PE (Dwivedi et al., 2020; Dwivedi & Bresson,
2021). They also naturally generalize the positional encoding used in Transformers (Vaswani et al.,
2017) to arbitrary graphs. The main limitation of this graph PE is the existence of a sign ambiguity as
eigenvectors are defined up to ±1. This leads to 2k number of possible sign values when selecting k
number of eigenvectors. In practice, we choose k ≤ n eigenvectors given the manifold assumption,
and therefore 2k is much smaller n! (the number of possible ordering of the nodes), and therefore
smaller amount of ambiguities to be resolved by the network. During the training, eigenvectors are
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uniformly sampled at random between the 2k possibilities (Dwivedi et al., 2020; Kreuzer et al., 2021)
in order for the network to learn to be invariant w.r.t the sign of the eigenvectors.

Other graph PE. Li et al. (2020b) proposed the use of distance encoding (DE) as node attributes,
and additionally as controller of message aggregation. DE captures relative distances between nodes
in a graph using powers of the random walk matrix. The resulting GNN was shown to have better
expressivity than the 1-WL test. However, the limitation on regular graphs, and the cost and memory
requirement of using power matrices may prevent the use of this technique to larger graphs.

You et al. (2019) proposed learnable position-aware embeddings based on random anchor sets of
nodes for pairwise nodes (or link) tasks. This work also seeks to develop positional encoding that can
be learned along with the structural representation within the GNN. However, the random selection
of anchors has its limitations, which makes their approach less generalizable on inductive tasks.

Bouritsas et al. (2020); Bodnar et al. (2021) introduced hybrid GNNs based on the WL-test and
the message-passing aggregation mechanism. These networks use prior knowledge about a class of
graphs of interest such as rings for molecules and cliques for social networks. The prior information
is then encoded into MP-GNNs to obtain more expressive models by showing that the such GNNs
are not less powerful than the 3-WL test. They obtained top performance on molecular datasets
but the prior information regarding graph sub-structures needs to be pre-computed, and sub-graph
matching and counting require O(nk) for k-tuple sub-structure. Besides, complexity of the message
passing process depends linearly w.r.t. the size of the sub-graph structure. Note that the core idea
of substructure counting with e.g. the number of rings associated to an atom provides a powerful
higher-order structural information to the network and can improve significantly the tasks related to
substructure counting.

B.3 TRANSFORMER-BASED GNNS

MP-GNNs are GNNs that leverage the sparse graph structure as computational graph, allowing
training and inference with linear complexity and making them scalable to medium and large-scale
graphs. However, besides their low expressivity, these GNNs hold two important and well-identified
limitations. Firstly, MP-GNNs are susceptible to the information bottleneck limitation a.k.a. over-
squashing (Alon & Yahav, 2020) when messages from across distant nodes are aggregated to a node.
Secondly, long-range interactions between far away nodes can also be limited, and require multiple
layers that can suffer from the vanishing gradient problem. These limitations are similar to the ones
present in Recurrent Neural Networks (RNNs) (Hochreiter & Schmidhuber, 1997), and can lead
MP-GNNs to perform poorly on tasks where long-range interactions are necessary.

To overcome these limitations, it seems natural to use Transformer networks (Vaswani et al., 2017)
which alleviates the long-range issue as ‘everything is connected to everything’. However, it was
found that the direct adoption of full-graph operable Transformers perform poorly compared to
MP-GNNs on graph structured datasets (Dwivedi & Bresson, 2021). Besides, Transformer-based
GNNs require to replace O(n) complexity with O(n2). So these GNNs are limited to small graphs
like molecules and cannot scale to larger ones like social graphs or knowledge graphs. Dwivedi &
Bresson (2021) designed a sparsely-connected architecture called GraphTransformer that reduces
the complexity to O(E) by considering the graph topology instead of connecting each node to all
other nodes, similar to GATs (Veličković et al., 2018). Still, the GraphTransformer was unable to
outperform SOTA GNNs on benchmark datasets. Along this line, Kreuzer et al. (2021) recently
proposed Spectral Attention Networks (SANs), a fully-graph operable Transformer model that
improves GraphTransformer (Dwivedi & Bresson, 2021) with two contributions. First, the authors
designed a learnable PE module based on self-attention applied to the Laplacian eigenvectors, and
injected this resultant PE into the input layer of the network. Second, SANs separated the parameters
for real edges and complementary (non-real) edges, enabling the model to process the available sparse
graph structure and long-range node connections in a learnable manner. However, their learned PE,
based on the Laplacian eigenvectors, inherently exhibits the limitation of sign ambiguity. Kreuzer et al.
(2021) attempted at alleviating the sign ambiguity through another architecture named Edge-Wise
LPE. However, the architecture’s complexity being O(n4) makes it a practically infeasible model.

GraphiT (Mialon et al., 2021) and Graphormer (Ying et al., 2021) were also very recently developed
as full-graph operable Transformers for graphs with the idea to weigh (or, control) the attention
mechanism based on the graph topology. Specifically, GraphiT employs diffusion geometry to capture
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short-range and long-range graph information, and Graphormer uses shortest paths. Altogether, these
works exploit different relative positional encoding information to improve the expressivity of
Transformers for graphs.

C INSTANCES OF LSPE WITH SPARSE AND TRANSFORMER GNNS

C.1 SPARSE GNNS WITH LSPE

In this section, we augment two MP-GNN architectures with learnable positional representation,
namely GatedGCN (Bresson & Laurent, 2017) and PNA (Corso et al., 2020).

C.1.1 GATEDGCN-LSPE

GatedGCNs (Bresson & Laurent, 2017) are sparse MP-GNNs equipped with a soft-attention mech-
anism that is able to learn adaptive edge gates to improve the message aggregation step of GCN
networks (Kipf & Welling, 2017). We augment this model to develop GatedGCN-LSPE, defined as:

h`+1, e`+1, p`+1 = GatedGCN-LSPE
(
h`, e`, p`

)
, h ∈ Rn×d, e ∈ RE×d, p ∈ Rn×d, (17)

with h`+1
i = h`i + ReLU

(
BN
(
A`1

[
h`i
p`i

]
+
∑

j∈N (i)

η`ij �A`2
[
h`j
p`j

]))
, (18)

e`+1
ij = e`ij + ReLU

(
BN
(
η̂`ij
))
, (19)

p`+1
i = p`i + tanh

(
C`1p

`
i +

∑
j∈N (i)

η`ij � C`2p`j
)
, (20)

and η`ij =
σ
(
η̂`ij
)∑

j′∈N (i) σ
(
η̂`ij′
)

+ ε
, (21)

η̂`ij = B`1h
`
i +B`2h

`
j +B`3e

`
ij , (22)

where h`i , e
`
ij , p

`
i , η

`
ij , η̂

`
ij ∈ Rd, A`1, A`2 ∈ Rd×2d and B`1, B

`
2, B

`
3, C

`
1, C

`
2 ∈ Rd×d.

C.1.2 PNA-LSPE

PNA (Corso et al., 2020) is a sparse MP-GNN model which uses a combination of node aggregators
to overcome the theoretical limitation of a single aggregator. We propose PNA-LSPE whose layer
update equation is defined as:

h`+1, p`+1 = PNA-LSPE
(
h`, e0, p`

)
, h ∈ Rn×d, e0 ∈ RE×d, p ∈ Rn×d, (23)

with h`+1
i = h`i + LReLU

(
BN
(
U `h

[h`i
p`i

]
,
⊕

j∈N (i)

M `
h

([
h`i
p`i

]
, e0ij ,

[
h`j
p`j

]))), (24)

p`+1
i = p`i + tanh

(
U `p

p`i , ⊕
j∈N (i)

M `
p

(
p`i , e

0
ij , p

`
j

)), (25)

and
⊕

=

[
I

S(D,α = 1)
S(D,α = −1)

]
⊗

 µ
σ

max
min

, (26)

where
⊕

is the principal aggregator designed in (Corso et al., 2020), LReLU stands for LeakyReLU
activation, amd U `h, U

`
p,M

`
h and M `

p are linear layers (or multi-layer perceptrons) with learnable
parameters.
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C.2 TRANSFORMER GNNS WITH LSPE

The recently developed SAN (Kreuzer et al., 2021), GraphiT (Mialon et al., 2021) and Graphormer
(Ying et al., 2021) are promising full-graph operable Transformers incorporating several methods
to encode positional and structural features into the network. In the next sections, we expand these
Transformer-based networks with the proposed LSPE architecture.

C.2.1 SAN-LSPE

Like Transformers, Spectral Attention Networks (SAN) (Kreuzer et al., 2021) operate on full graphs
although the network separates the parameters coming from existing edges and non-existing edges
in the graph. Furthemore, the contribution of attentions from existing and non-existing edges are
weighted by an additive positive scalar γ, which can be tuned for different tasks. SAN also considers
a Learnable Positional Encoding (LPE) module which takes in Laplacian eigenvectors and transforms
them into a fixed size PE with a self-attention encoder. This PE is then used in the main architecture
in a manner similar to MP-GNNs-PE as defined in Eq. (5). We propose to extend SAN by replacing
the LPE module with the LSPE architecture proposed in Section 3.1 where positional representation
is learned in line with structural embedding at each GNN layer:

h`+1, p`+1 = SAN-LSPE
(
h`, e0, p`

)
, h ∈ Rn×d, e0 ∈ Rn×n×d, p ∈ Rn×d, (27)

with h`+1
i = BN

(
h̄`+1
i +W `

2 ReLU
(
W `

1 h̄
`+1
i

))
∈ Rd (28)

h̄`+1
i = BN

(
h`i + ĥ`+1

i

)
∈ Rd, (29)

ĥ`+1
i = O`

( Hn

k=1

∑
j∈V

wk,`ij∑
j′∈V w

k,`
ij′

vk,`j

)
∈ Rd, (30)

wk,`ij =

{
1

1+γ · exp(Ak,`ij ) if ij ∈ E
γ

1+γ · exp(Āk,`ij ) if ij 6∈ E
, (31)

{
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T
diag(ck,`ij )kk,`j /

√
dk ∈ R if ij ∈ E
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√
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(32)
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Ck,0 =e0W k
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k,0 =e0W̄ k
e ∈ Rn×n×dk (35)

and p`+1
i = p`i + tanh
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O`p
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γ
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Ck,0p =e0W k
p,e, C̄
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p =e0W̄ k

p,e ∈ Rn×n×dk (41)

where W `
1 ,W

`
2 ∈ Rd×d, O`, O`p ∈ Rd×d, W k,`
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V , W̄ k,`
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k,`
p,V ∈ Rd×dk , W k

e , W̄
k
e ,W

k
p,e, W̄

k
p,e ∈ Rd×dk , and dk = d/H

is the dimension of the kth head for a total of H heads. BN denotes the standard Batch Normalization
(Ioffe & Szegedy, 2015). Finally, we make the balance scalar parameter γ ≥ 0 learnable (also
clipping its range in [0, 1]) differently from (Kreuzer et al., 2021) where its optimal value is computed
by grid search.

C.2.2 GRAPHIT-LSPE

Similarly to SAN, GraphiT (Mialon et al., 2021) is a full-graph operable Transformer GNN which
makes use of the diffusion distance to capture short-range and long-range interactions between nodes
depending of the graph topology. This pairwise diffusion distance is used as a multiplicative weight
to adapt the weight scores to the closeness or farness of the nodes. For example, if two nodes are
close on the graph, them the diffusion distance Kij will have a value close to one, and when the two
nodes are far away then the value of Kij will be small.

Unlike SAN, the GraphiT model does not consider separate parameters for existing and non-existing
edges for a graph. However, following Kreuzer et al. (2021) and our experiments, separating the
parameters for each type of edges showed to improve the performance. Therefore, we augment the
original GraphiT architecture with learnable positional features and use two sets of parameters for the
edges and the complementary edges to define GraphiT-LSPE. The GraphiT-LSPE model uses the
same update equation as SAN-LSPE except for the weight score which are re-defined to introduce
the diffusion kernel:

wk,`ij =

{
Kij · exp(Ak,`ij ) if ij ∈ E
Kij · exp(Āk,`ij ) if ij 6∈ E

. (42)

Following (Mialon et al., 2021), the diffusion distance is chosen to be the p-step random walk
kernel defined as K = (In − β∆)p ∈ Rn×n where In,∆ ∈ Rn×n is the identity matrix and the
graph Laplacian matrix respectively. Hyper-parameter β controls the amount of diffusion with value
between [0.25, 0.50].

D ADDITIONAL MODEL CONFIGURATION DETAILS

In Table 4, additional details on the hyperparameters of different models used in Table 1 are provided.
As for hardware information, all models were trained on Intel Xeon CPU E5-2690 v4 server having
4 Nvidia 1080Ti GPUs, with each single GPU running 1 experiment which equals to 4 parallel
experiments on the machine at a single time.
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Table 4: Additional hyperparamters for the models used in Table 1. k is the dimension of PE, or the
steps of random walk if the PE is RWPE. β and p is applicable to GraphiT (Sec. C.2.2). Init lr and
Min lr are the initial and final learning rates for the learning rate decay strategy where the lr decays
with a reduce Factor if the validation score doesn’t improve after the Patience number of epochs. α
and λ are applicable when PosLoss is used (Eqn. 12).

Z
IN

C

Model Init PE LSPE PosLoss k β p Init lr Patience Factor Min lr α λ

GatedGCN x x x - - - 1e-3 25 0.5 1e-6 - -
GatedGCN LapPE x x 8 - - 1e-3 25 0.5 1e-6 - -
GatedGCN RWPE D x 20 - - 1e-3 25 0.5 1e-6 - -
GatedGCN RWPE D D 20 - - 1e-3 25 0.5 1e-6 1 1e-1

PNA x x x - - - 1e-3 25 0.5 1e-6 - -
PNA RWPE D x 16 - - 1e-3 25 0.5 1e-6 - -

SAN x x x - - - 3e-4 25 0.5 1e-6 - -
SAN RWPE D x 16 - - 7e-4 25 0.5 1e-6 - -

GraphiT x x x - 0.25 16 3e-4 25 0.5 1e-6 - -
GraphiT RWPE D x 16 0.25 16 7e-4 25 0.5 1e-6 - -

M
O

LT
O

X
21

Model Init PE LSPE PosLoss k β p Init lr Patience Factor Min lr α λ

GatedGCN x x x - - - 1e-3 25 0.5 1e-5 - -
GatedGCN LapPE x x 3 - - 1e-3 25 0.5 1e-5 - -
GatedGCN RWPE D x 16 - - 1e-3 25 0.5 1e-5 - -

PNA x x x - - - 5e-4 10 0.8 2e-5 - -
PNA RWPE D x 16 - - 5e-4 10 0.8 2e-5 - -
PNA RWPE D D 16 - - 5e-4 10 0.8 2e-5 1e-1 100

SAN x x x - - - 7e-4 25 0.5 1e-6 - -
SAN RWPE D x 12 - - 7e-4 25 0.5 1e-6 - -

GraphiT x x x - 0.25 16 7e-4 25 0.5 1e-6 - -
GraphiT RWPE D x 16 0.25 16 7e-4 25 0.5 1e-6 - -

M
O

L
PC

B
A

Model Init PE LSPE PosLoss k β p Init lr Patience Factor Min lr α λ

GatedGCN x x x - - - 1e-3 25 0.5 1e-4 - -
GatedGCN LapPE x x 3 - - 1e-3 25 0.5 1e-4 - -
GatedGCN RWPE D x 16 - - 1e-3 25 0.5 1e-4 - -

PNA x x x - - - 5e-4 4 0.8 2e-5 - -
PNA RWPE D x 16 - - 5e-4 10 0.8 2e-5 - -
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